
Direct 4D PET reconstruction with discrete tissue types

Michele Scipioni

Abstract— Dynamic positron emission tomography (dPET)
is known for its ability to extract spatiotemporal information
of a radio tracer in living tissue. In this paper, a novel
direct reconstruction framework is presented, which include
concurrent clustering as a potential aid in addressing high
levels of noise typical of voxel-wise kinetic modeling. Core
assumption is that the imaged volume is formed by a finite
number of different functional regions, and that voxel-wise
time courses are determined by the functional cluster they
belong to. Probabilistic Graphical Modeling (PGM) theory
is used to describe the problem, and to derive the inference
strategy. The proposed iterative estimation scheme provides
concurrent estimate of kinetic parameter maps, activity images,
and segmented clusters. Simulation studies and exploratory
application to real data are performed to validate the proposal.

I. INTRODUCTION

Positron emission tomography (PET) is a molecular imag-
ing modality enabling measurements of radio tracer distribu-
tions in vivo. In addition to conventional static acquisitions,
dynamic scans allow to measure the kinetics of the radio-
tracer in living tissues, and to follow biological processes
to better understand metabolism and drug action. Dynamic
PET scans are complex spatiotemporal processes [1], which
represent a major challenge for analysis, as they require to
simultaneously handle spatial and temporal information.

The conventional (indirect) approach to estimate para-
metric maps from 4D PET data begins with the indepen-
dent reconstruction of a sequence of 3D emission images
from dynamic projection data, followed by the voxel-wise
application of a kinetic model (KM) to the reconstructed
time-activity curves (TACs) [1]. Failing to incorporate in the
reconstruction information from multiple time frames may
lead to enhanced noise in dynamic activity images, which
then propagates to parametric maps estimates [2], because
of the low signal-to-noise ratio (SNR) of each TAC.

Several Bayesian methods have been proposed to tackle
the ill-posedness of the problem of PET reconstruction
through the introduction of prior models acting as regular-
ization factors. Traditional choices for priors aim to enforce
spatial constraints derived by local-neighborhood kernels or
additional high resolution anatomic images. A different, post-
reconstruction strategy [3] seeks to reduce noise in kinetic
analysis by grouping together voxels with similar kinetics,
and identifying the boundaries of each functional region.
Clustering analysis using principle component analysis and
supplemented by a mixed Gaussian model to help classifica-
tion of noisy dataset [4] has been thoroughly investigated, as
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well as combined hierarchical and K-means cluster analysis
[3], or constrained mixture representations [5]. All these
solutions, however, are still ignoring the temporal correlation
of the activity, while reconstructing different time frames.

With the direct 4D reconstruction [1], by contrast, the
tracer kinetics can be estimated directly from the raw pro-
jection data, allowing better noise modeling and hence more
accurate results in terms of images and kinetic maps. One
major drawback is the increased complexity of the opti-
mization algorithms, especially when dealing with nonlinear
compartment models. Moreover, current models for direct
estimation are based on a deterministic description of voxel-
wise TACs captured by the chosen KM, considering the
photon counting process as the only source of uncertainty.

In this work, a new modeling strategy is introduced,
based on the key assumptions that (i) activity time course
is subject to uncertainty even if the parameters of the
underlying dynamic process are known, and that (ii) there
exist finite states of tissue, each one characterized by differ-
ent kinetics and time courses. This leads to a hierarchical
Bayesian model, which is formulated using the formalism
of Probabilistic Graphical Modeling (PGM) [6]. Describing
all variables involved as random variables, the inference of
the joint probability distribution arising from the model can
be addressed using a gradient based algorithm for image
reconstruction, parametric maps estimation, and clustering.

II. METHODS

A. Theory

In 4D PET imaging, both activity image x = {xjm}
and measured counts y = {yim} are functions of time,
and organized into multiple consecutive time frames, m ∈
{1, . . . ,M}, each containing all the events detected in a fixed
time interval. Let j ∈ {1, . . . , J} be the voxel index, and
i ∈ {1, . . . , I} the index of a sinogram line of response
(LOR). The geometry of the acquisition system and the
attenuation determine the probability P = {pij} of a photon
emitted by voxel j being detected by LOR i. Approximating
pij as time-invariant, the probability to observe counts yim
in detector bin i, given activity xm at time frame m is:

p(yim|x) = Poisson

( J∑
j=1

pijxjm; yim

)
(1)

Let us now introduce the hypothesis that there exist finite
states of tissue, each characterized by different dynamics.
Therefore, each voxel-wise TAC is modeled as a sample from
a Gaussian Mixture of G different classes, with voxels within
the same functional region sharing similar kinetic behavior,
and variations only due to noise:



p(xj:|z,θ) =

M∏
m=1

N
(
xjm;µgm(θg:), σgm(θg:)

)
(2)

Let z = {zjg} be a set of auxiliary hidden random
variables, such that the hidden state (i.e. cluster membership)
of voxel j is expressed with a one-of-G representation:∑G
g=1 zjg = 1 and zjg ∈ {0, 1}. The prior probability

p(zjg == 1) of voxel j belonging to tissue g when no
observation of its time course is available is determined by
the hidden states of its neighbors Cj , i.e. p(zjg == 1|zCjg).

Let f(θ; t) represent a generic kinetic model function,
with θ = {θgp} vector of model parameters. The mean
µg and standard deviation σg of cluster g are expressed
as functions of f(θg:; t). The cluster variance σg represents
the uncertainty about the ability of the kinetic model to
completely capture the variability of activity time courses,
even when parameters θ and membership labels z are known.
In this work, no prior assumption is imposed on the values
of the kinetic parameters, i.e. p(θ) ∼ U(0,∞).

The probabilistic graph in Fig. 1 depicts the causal re-
lationship between the random variables involved in this
model: final goal is to infer the value of three latent variables,
namely the kinetic parameter vector θ, the discrete tissue
state z for each voxel, and the dynamic activity image x,
given the observation of projection data y. This can be
achieved by maximizing the following joint distribution:

p(y, x, θ, z) = p(θ)p(z)p(x|z, θ)p(y|x) . (3)

B. Algorithm

The joint optimization in (3) can be performed by alter-
nating the optimization of the marginal posterior of each
variable, conditioned to the provisional estimates of all the
others. When applied to each node in the graph in turn, this
procedure defines a single cycle of an iterative algorithm to
update all the variables by alternating the following steps:

z(n+1) = arg max
z
p(z|x, θ, y)

∣∣
x(n), θ(n) (4)

θ(n+1) = arg max
θ
p(θ|x, z, y)

∣∣
x(n), z(n+1) (5)

x(n+1) = arg max
x

p(x|z, θ, y)
∣∣
z(n+1), θ(n+1) (6)

Two Expectation-Maximization (EM) algorithms are used
to maximize (i) the conditional posterior of the parameters
of the mixture and (ii) the conditional probability of activity
time series x (one-step-late (OSL) variant of MLEM [7]).

1) Updating the mixture components, given x and θ:
From Fig. 1, z and y are conditionally independent, given x
and θ: the hidden state zjg of each voxel can then be updated
maximizing the conditional posterior of the Gaussian mixture
model, p(z|x, θ) = p(z)p(x|z, θ)/p(x), instead of (4):

α
(n+1)
jg =

π
(n)
jg

∏
mN

(
x
(n)
jm , µ

(n)
gm, σ

(n)
gm

)
∑
g′ π

(n)
jg′
∏
mN

(
x
(n)
jm , µ

(n)
g′m, σ

(n)
g′m

) , (7)

Fig. 1. Probabilistic Graphical Model representation of 4D PET imaging,
with voxel-wise TACs related to a hidden kinetic state, and mean activity
of each cluster function of a set of kinetic parameters. White background
circles are latent random variables; gray background circle is the observed
variable (raw counts); black squares represent probability distributions used
to model each variable; colored plates convey dimensionality information.

where, for easier readability, αjg symbolizes the posterior
probability p(zjg == 1|x, θ), and πjg the prior probability
p(zjg == 1). Values for all variables other than the condi-
tional posterior αjg are fixed at their provisional estimate.

2) Updating the kinetic parameters θg for each cluster g:
To do this, the most likely (i.e. mean) time course needs to
be computed first for each class g:

µ̂(n+1)
gm =

∑
j α

(n+1)
jg x

(n)
jm∑

j α
(n+1)
jg

. (8)

Then, the new estimate of the hidden state z is frozen, and
the estimate of kinetic parameters θ is updated by fitting the
chosen kinetic model to each curve µ̂g , from (8):

θ(n+1)
g = arg min

θg

∑
m

‖µ̂(n+1)
gm − f(tm,θg)‖2W . (9)

This minimization can be done using any weighted non-
linear least-squares method. Here, a gradient descent with
Levenberg-Marquardt (LM) pre-conditioning was used [8].
Cluster means µ and variances σ can, therefore, be expressed
as function of θ(n+1):

µ(n+1)
gm = f(θ(n+1)

g ; tm) ,

σ2(n+1)

gm =

∑
j

[
α
(n+1)
jg

(
x
(n)
jm − µ

(n+1)
gm

)2]∑
j α

(n+1)
jg

.
(10)

3) Updating the activity time series x, given kinetic
and mixture parameters: This can be done maximizing
(3) marginalized with respect to everything except for x:
p(x|z, θ, y) ∝ p(x|z, θ)p(y|x), where p(y|x) is the Poisson
data-fidelity term (1) and p(x|z, θ) is a prior term which
incorporates information about the hidden functional states
and kinetic modeling. The OSL [7] method can be used:

x
(n+1)
jm =

x
(n)
jm∑

i pij +
∂ log p(x|z, θ)

∂x
(n)
jm

∑
i

pij
yim∑

j′ pij′x
(n)
j′m

,

(11)
with:



log p(x|z, θ) =
∑
j,m,g

α
(n+1)
jg

(
x
(n)
jm − µ

(n+1)
gm

)2
σ2
gm

(n+1)
. (12)

This quadratic potential extends the idea of voxel neigh-
borhoods to functionally homogeneous clusters, and σ2

gm

provides an auto-tuning of the prior weight.
4) Updating the global multinomial probability of each

cluster g: Lastly, the prior probability πjg of each voxel
can be updated based on the hidden states of its neighbors:

π
(n+1)
jg =

1

size(Cj)

∑
k∈Cj

α
(n+1)
kg . (13)

5) Determining the number of mixture components G:
The optimal number of clusters is usually an unknown of the
problem. Here, we adopted an on-line update strategy, using a
varying number of clusters until an optimum is reached. After
each iteration, we check if it is possible to reduce the number
of classes following criteria of redundancy (overlapping
clusters) and significance (too sparse posterior map).

III. EXPERIMENTS

A. Simulation

Dynamic [18F]FDG PET scans were simulated for a
Siemens Biograph mMR scanner using the geometric phan-
tom in Fig. 2. The scanning schedule consisted of 24
time frames over 60 minutes: 4x20s, 4x40s, 4x60s, 4x180s,
8x300s. Regional TACs shown in Fig. 2 were generated
according to an irreversible bi-compartmental model and
assigned to different phantom regions. Resulting noise-free
dynamic activity images were forward projected to simulate
dynamic sinograms, and Poisson noise was generated pro-
ducing an expected total number of events of ∼20 million.

B. Real Data

A brain dynamic [18F]FDG PET scan was performed on
the Siemens Biograph mMR scanner. The Institutional Re-
view Board approved all experimental procedures involving
human subjects. First 40 minutes of listmode raw data were
binned into a total of 24 dynamic frames: 12x10s, 2x30s,
3x60s, 2x120s, 4x300s, 1x600s. The vendor software was
used to extract the data correction matrices for each frame,
including normalization factors, scattered and random counts
estimates, and MR-based attenuation maps.

Fig. 2. Synthetic data used in simulation. (a) Digital phantom used in
the simulation study, composed by four different regions mimicking the
response of gray matter, white matter, and tumor tissue. (b) Input function
and time-activity curves assigned to each region of the phantom.

Fig. 3. Plot of the trade-off between bias [dB] and image noise for different
reconstruction methods, as resulting from the simulation study.

IV. RESULTS AND DISCUSSION

Simulated and real data were reconstructed independently
by the proposed DirectCluster algorithm, plus a Direct [2]
and an Indirect (OSEM + post-reconstruction fitting) alterna-
tives, using a single subset of projections and 100 iterations.

Fig. 3 shows a comparison of the three algorithms, in terms
of bias-vs-noise trade-off computed on the reconstructed
simulated activity images over 100 iterations. The conver-
gence rate of Direct (red) and DirectCluster (green) is slower
than conventional OSEM (blue), because of the additional
temporal correlations to account for, but this is compensated
by a greater bias reduction. While both kinetic-informed
methods can limit the increase of noise with reconstruction
iterations, the achievement of an overall convergence in the
estimate of the optimal number of kinetic clusters and of
their mean time courses (after ∼30 iterations) allows the
proposed DirectCluster method to keep the noise almost
constant, while continuing reducing the bias.

Fig. 4. Simulation study after 100 iterations. (top) Five time frames
extracted from the whole time series. (bottom) Parametric maps of the 4
model’s micro-parameters, plus the macro-parameter Ki.



Fig. 5. Real [18F]FDG human data, after 100 iterations. (top) Five example
time frames with different length of acquisition. (bottom) Parametric maps
of the four model micro-parameters, plus the macro-parameter Ki.

Fig. 4 compares the result after 100 iterations in terms of
(top) activity time frames, x, and (bottom) the kinetic maps,
θ. Informing the reconstruction with knowledge coming from
kinetic modeling has a clear impact on the quality of both
images and parametric maps. The proposed DirectCluster
method is able to compete, where not outperform, the quality
of the maps produced by the direct method. It is especially
interesting to notice the greater capability of recovering
edges between different tissues, which is a direct effect of the
clustering information encoded in the log-prior distribution
(12) used to regularize the Poisson likelihood in (11).

Fig. 5 shows the same kind of images, as estimated from
the reconstruction of the real dataset. It is noteworthy to see
how a constraint that correlates the activity of successive time
points allows to recover meaningful details in early frames:
those are especially challenging for a frame-independent
reconstruction approach, because of the low signal-to-noise
ratio, due to short acquisition windows (∆t ≤ 10s) required
to follow the fast kinetics of the arterial phase. The limited
number of cluster means used by the DirectCluster method
to compute the kinetic-based prior allows for a great SNR
enhancement, outperforming also the Direct approach.

Furthermore, the proposed method provides also an es-
timate of the posterior distribution p(z|x, θ) of the hidden
states for each voxel j, resulting from (4) and (7). Each
map in Fig. 6 shows the posterior probability of each voxel
having a time course similar to one of the kinetic clusters
identified in the volume, and they can be read also as cluster
membership probability maps. A part from the active role
these posterior maps play in the inference, we anticipate them
being of help in understanding tissue kinetic behavior.

V. CONCLUSIONS
In this work a cluster-based direct reconstruction algorithm

was developed and evaluated, which decouples the over-
all reconstruction problem allowing concurrent estimation

Fig. 6. Conditional posterior maps. (a) Simulation: background and zero
activity; white matter; gray matter; tumors. (b) Patient data: background;
non-brain tissue; CSF; white matter; gray matter; mostly blood tissue.

of tomographic images, kinetic parameters, and functional
clusters. This approach is based on two critical assumptions.
The first is that the imaged volume contains a finite num-
ber of tissue types, each with a unique kinetic behavior
identified by a certain TAC. Then, each voxel-wise TAC
is modeled as a sample from a Gaussian Mixture, with
different physiological responses for each component. If
one or more of these assumptions is not satisfied, then the
performance of the proposed method may suffer. While the
idea of using mixture representations is not new in the field
of PET kinetic modeling, the aim of this work is rather
to show how incorporating the clustering step within the
reconstruction may assist the estimate of dynamic images
and parametric maps. This idea presents several advantages
compared to existing methods: it is simple to implement;
it is flexible to an arbitrary choice of the kinetic model;
it is faster than conventional direct methods, as the kinetic
modeling is applied only to a few cluster means, at each
iteration; and it grants meaningful noise reduction, via a
boundary-aware averaging. Finally, work is in progress to
extend the proposed method with a model selection strategy
applied at each tomographic iteration, before model fitting:
this would allow to select an optimal model for each cluster
mean, simproving accuracy in maps estimation.
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