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Simulations

Parametric images provide insight into the spatial distribution of physiological parameters, but they are often 
extremely noisy, due to low SNR of tomographic data. Direct estimation of maps from projections [1] allows 
accurate noise modeling, improving the results of post-reconstruction fitting. 
We propose a method, which we name kinetic compressive sensing (KCS), based on a hierarchical 
Bayesian model and on a novel reconstruction algorithm, that encodes sparsity of kinetic parameters.
The parametric maps are reconstructed by maximizing the joint probability of all unknown parameters in the 
graph in Fig.1 using an iterated conditional modes (ICM) approach [3]. 
 

 

The simulation study demonstrated that the proposed method of introducing a sparsity-inducing prior in a direct 
reconstruction framework can help in producing high-quality images and parametric maps, which are both 
amenable for display and quantitatively more accurate than what a post-reconstruction fitting and unconstrained 
direct reconstruction can achieve (i.e. lower bias and lower variance, Fig.3).
This method appears to be promising as a feasible approach for applying kinetic modeling to very large 4D 
clinical datasets with a reduced computational cost, thanks to the parallel GPU implementation based on the 
analytic expression of the kinetic model and its derivatives. 
Future studies will extend the current open-source implementation, by integrating different kinetic models (linear 
and non-linear) and different priors. 
The proposed approach can also be adapted not only to PET data, but also to different dynamic imaging 
techniques, such as dynamic CT or dynamic contrast enhancement (DCE) MRI.
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Insight about GPU implementation of MAP-LM optimization algorithm
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Simulation setup
To assess the effect of the KCS algorithm in comparison with 
standard kinetic modeling techniques, and to evaluate the 
performance of the GPU implementation, we realized a Monte 
Carlo (MC) simulation with 100 noisy realizations of a simple 
geometrical phantom. The kinetic behavior of the three main 
regions has been simulated using a 2-tissues irreversible 
compartment model (i.e. 3 parameters model), while the square 
area in the center has been modeled as a blood input region. In 
this simulation study we generated synthetic dynamic PET data, 
according to the hierarchical bayesian model presented above. 

PET Dataset
The conventional indirect and direct, and 
the novel KCS approaches were applied to 
[18F]-FDG brain PET data, acquired on a 
Siemens mMR PET-MR scanner, using a 2-
tissue irreversible compartment model.

PET Results
Top row of Fig.4 shows how the different 
methods perform in terms of image 
reconstruction, while the bottom row show 
the estimated Ki (net uptake rate) 
parametric maps: the proposed KCS direct 
method is able to produce spatially 
coherent images, with low noise and good 
tissue contrast, also when it comes to 
parametric maps estimates.

Algorithm workflow

Expectation of 
activity predicted 

by the model

Raw projection 
data (4D)

STEP 1:
optimization of activity 

time series
(OSL-MAP-EM)

New estimate 
of activity 
time series

STEP 2:
voxel-wise optimization 
of kinetic parameters

(MAP-LM)

New estimate 
of parametric 

maps

We use the in-house developed Occiput.io [5] toolbox, which 
uses GPU parallel computation for the operations of projection 
and backprojection involved in the OSL-MAP-EM step [4]:

STEP 2 

STEP 1

1) CUDA kernels to evaluate kinetic model and derivatives of log 
posterior and of MRF log prior.
2) CUDA implementation of the MAP-LM optimization, based on 
cuBLAS batched matrix operations. 

The entire EM-LM reconstruction is performed 
on the GPU, with one GPU thread per voxel.
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STEP 1STEP 1

Many GPU threads working in parallel 
on a CUDA kernel to evaluate model 
and derivatives, voxelwise [2]. 

STEP 2STEP 2

cuBLAS functions, implementing 
a parallel Levemberg-Marquardt 
optimization, through batched 
matrix multiplications and 
inversions.

STEP 3STEP 3

Many GPU threads working in parallel on a 
CUDA kernel to compute the  derivatives 
of the Markov Random Field log prior, 
with Smooth L1-norm cost function on 
the current estimate of kinetic maps.

STEP 4STEP 4

Parameter estimates update, 
voxelwise (kinetic maps).

iterate until convergence

Fig. 1

Fig. 2

Fig.4
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the model of the acquisition system 
consists of the ordinary Poisson 
model, incorporating all effects of 
attenuation, scatter and randoms;

the kinetic model encodes the 
assumption that the voxel intensities 
are noisy realizations of a hidden 
dynamic process, modeled using a 
multi-compartmental model.

a sparsity-inducing prior distribution 
of the kinetic parameters is 
introduced as a Markov Random 
Field (MRF) with Smooth L1-norm cost 
function [6].

The model has three key components:

[1]

[2]

[3]

Results
We compared the results of three different methods (indirect 
recon, direct recon, and direct recon with kinetic 
compressive sensing, KCS). 

In Fig.2, it is easy to recognize a first reduction in voxel-by-
voxel variance when the kinetic model is used to regularize 
the reconstruction (DIRECT), which is further reduced when 
the sparsity assumption of the spatial derivatives of the 
parametric maps is enforced (KCS). 

The bias/variance plot shows how a direct approach 
improves the quality of the estimate of parametric maps, 
with respect to the results provided by a standard indirect 
post-reconstruction fitting, but also how the novel sparsity 
constraint is able to further reduce the variance of the 
produced parametric maps, without affecting (if not 
decreasing) the bias.
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Background

Conclusions

Gaussian with variance σ
[2] 

[1]
Poisson

[3]
MRF with L-1 norm cost

The algorithm consists of alternating the optimization of the activity time series and of the kinetic parameters: 
1) given the kinetic parameters: one-step-late maximum a-posteriori expectation-maximization (OSL-MAP-EM) [4] 
2) given the activity time series: maximum-a-posteriori Levemberg-Marquardt (MAP-LM) optimization 


