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Abstract— In the present work a study is carried out in order
to assess the efficiency of the direct reconstruction algorithms
on noisy dynamic PET data. The study is performed via Monte
Carlo simulations of a uniform cylindrical phantom whose emis-
sion values change in time according to a kinetic law. After gen-
erating the relevant projection data and properly adding the ef-
fects of different noise sources on them, the direct reconstruction
and parametric estimation algorithm is applied. The resulting
kinetic parameters and reconstructed images are then quanti-
tatively evaluated with appropriate indexes. The simulation is
repeated considering different sources of noise and different val-
ues of them. The results obtained allow us to affirm that the di-
rect reconstruction algorithm tested maintains a good efficiency
also in presence of noise.
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I. INTRODUCTION

Positron emission tomography (PET) dynamic studies are
performed to quantify tissue-specific biochemical properties.
When acquiring a dynamic PET scan, the activity of the PET
tracer is measured at multiple time points, involving a se-
quence of acquisitions.

In routine use PET scanners, acquired data are subject
to several noise sources, such as accidental scattering, ran-
dom scattering and attenuation [1]. Such unwanted events can
compromise accuracy in determining the tracer behaviour if
not suitably corrected or accounted for. Moreover, in digital
image acquisition in addition to the stochastic nature of the
photon-counting, the intrinsic thermal and electronic noise
should be accounted for.

In conventional reconstruction and analysis methods the
sequence of emission images is first reconstructed and then,
in a separate step, the estimation of kinetic parameters from
time activity curves (TACs) is performed. The kinetic param-
eter estimation is based on the application of a compartment
model analysis; it allows to determine the pharmacokinetic
behaviour of the administered drug in a target organ [2]. This
process is known as kinetic analysis. Kinetic analysis in a

voxel-by-voxel fashion provides parametric images that can
be used to determine the spatial distribution of the behaviour
of specific tracer [3].

Recently, direct reconstruction methods have been pro-
posed, that combine emission image reconstruction and ki-
netic modelling into a single formula and estimate parametric
images directly from raw projections [4] or list mode data,
as well [5]. The most recent direct algorithms proposed in
literature are presented as ”generalized algorithms”, because
they do not depend on a specific kinetic model. Among those
generalized algorithms, the one proposed in [6] results very
efficient, both in terms of computing and of kinetic parame-
ters estimation performances. Such algorithm (called OTEM,
optimization transfer with expectation-maximization surro-
gate) uses an expectation-maximization (EM) based surro-
gate function in the image domain for direct reconstruction of
non-linear parametric images in dynamic PET. The EM sur-
rogate function is maximized by using penalized maximum
likelihood (ML) method, based on a modified Levenberg-
Marquardt algorithm. It has been proven that OTEM algo-
rithm can achieve a better bias-variance performance than the
indirect reconstruction algorithms. Moreover, its convergence
rate is substantially faster than previous direct reconstruction
algorithms [6].

However, no studies have been performed so far about
the evaluation of the performance of this new class of di-
rect reconstruction algorithms, such as the OTEM algorithm,
when noisy data are considered. In fact, it is well known that
the presence of noise sources compromises the estimation of
the emission density when ML reconstruction algorithms are
used [7, 8].

In the present work we study the behaviour of this partic-
ular direct reconstruction algorithm, starting from dynamic
PET data with different noise degrees. Such evaluation is
performed by simulating realistic PET measured data, and
analysing them via the OTEM algorithm.

II. THEORY

The concentration of the radio-tracer at a given pixel at
time t can be described by the following general tracer kinetic



model [9]:

CT (t,k, fv) = (1− fv)h(t,k)⊗Cp(t)+ fvCwb(t) (1)

where k is the vector of the kinetic parameters that de-
termines the tracer uptake in the tissue, fv is the fractional
volume of blood in the tissue, h(t,k) is the tissue impulse re-
sponse function, Cp(t) is the tracer concentration in plasma,
Cwb(t) is the tracer concentration in whole blood; ⊗ is the
convolution operator. The image intensity at pixel p in time
frame t, xt(Kp), is then given by:

xt(Kp) =
∫ te

ts
CT (τ,Kp)e−λτ dτ (2)

where the integral is evaluated between the start and end
times of frame t, Kp is a vector containing the fractional
volume of blood fv and the kinetic parameters k j (KP =
[ fv,K1,k2,k3,k4]p) relative to the pth pixel and λ is the decay
constant of the radio-tracer. PET measured data can be mod-
elled as a collection of independent Poisson random variables
with the expected projection ȳt(K) in time frame t related to
the dynamic image xt(K) through an affine transform:

ȳt(K) = Axt(K)+ rt (3)

where A is the system matrix, rt is the expectation of scat-
tered and random events in the tth frame. In the model pre-
sented in (3), the expected measurement noise is assumed to
be null (white Gaussian noise).

In order to estimate the parameters matrix K according to
ML method, the following log-likelihood function of the dy-
namic PET data must be evaluated [6]:

L(y|K) =
Ttot

∑
t=1

Dtot

∑
i=1

yit logȳit(K)− ȳit(K) (4)

where Ttot is the total number of time frames, Dtot is the
total number of the detector pairs, ȳit is the expected mea-
surement of detector pair i in time frame t, from (3).

Direct reconstruction finds the solution by maximizing the
following penalized likelihood function:

θ(K) = L(y|K)−βU(K) (5)

K̂ = argmax
K

θ(K) (6)

where U(K) is a smoothness penalty and β is the regular-
ization parameter that controls the trade-off between resolu-
tion and noise. The smoothness penalty can be applied either
on the kinetic parameters K or on the dynamic image xt(K),
depending on the application.

Fig. 1: Schematic flow diagram of the OTEM direct reconstruction
algorithm

A. Direct reconstruction algorithm

The direct reconstruction algorithm we used is the OTEM
algorithm. It performs a ML reconstruction, including a
penalized likelihood function, shown in eq. 6. Such algo-
rithm performs non linear fitting with a modified Levenberg-
Marquardt method.

Details of the algorithm are described in [6]. In fig. 1 a



schematic flow diagram of the OTEM algorithm is shown.
As we can see from the diagram, the output of the algorithm
consists on the n+ 1 parametric images [K] (relevant to fv
and k j parameters, j = 1 . . .n), and the reconstructed dynamic
images [X ].

III. METHODS

A. Simulation

We performed Monte Carlo simulations in order to eval-
uate the goodness of the kinetic parameters estimation and
image generation with the OTEM direct reconstruction algo-
rithm in presence of noise.

Emission sinograms are generated by projection of two-
dimensional radioactivity distribution functions into sino-
grams (true coincidences). On each sinogram, random and
scatter coincidences, and measurement noise are added to ac-
count for theoretical and experimental evidence.

A uniform cylindrical phantom with radius of 10 cm and
length of 15 cm, in a circular field of view (FOV) of 70 cm in
diameter is generated; the total number of pixels on the im-
age plane was nx x ny = 128 x 128. Dynamic emission data
were generated changing the emission mean value inside the
cylinder frame-by-frame, according to the two-tissue, 4-k pa-
rameter kinetic model [9]. The k-values used as input to the
simulation are shown in table 1, where T1 tissue simulates a
highly irreversible condition (typical for example in cerebral
tissue) while T2 tissue simulates a more reversible condition
(typical for example in liver), for 18F-FDG tracer.

fv K1 k2 k3 k4 Ki
T1 0.05 0.082 0.055 0.085 0.002 0.0497
T2 0.03 0.426 0.660 0.010 0.022 0.0064

Table 1: Input K-values used in the simulation. fv is expressed as %
value; units for K1 and Ki are ml/cm3/min while for k j ( j = 2 . . .4) are
min−1. T1 tissue simulates a highly irreversible condition (typical for
example in cerebral tissue) while T2 tissue simulates a more reversible
condition (typical for example in liver)

Emission time frame duration varied according to typical
values used in clinical PET data acquisitions: 12 frames x
10sec + 2 x 30sec + 3 x 60sec + 2 x 120sec + 5 x 300sec,
for a total of acquisition time of 2000sec. For each emission
time frame, Poisson events are generated with the mean value
equal to the relevant input emission value data. Projected data
(sinograms) were generated according to eq. 3; they consist
of nb x na = 186 x 360 points, where nb is the number of points

for each projection and na is the number of angles from −π

to π .
The noisy data were generated including random scat-

tering (RS), accidental coincidences (AC) and measurement
noise (GN). AC were generated as Poisson events identically
distributed in the sinogram, with a constant mean value. RS in
the sinogram was modelled as a Gaussian function having its
maximum at the center of each projection, and extending to
the tails, which are outside the source boundary; the Gaussian
function values are the means of a Poisson events generator.

In the simulation, the RS values were from 0% to 45% of
the maximum value of the sinogram points and, equally, AC
values were from 0% to 45%. In order to include the mea-
surement noise (GN) a Gaussian white noise, with mean null
and variance equal to 2% of the maximum sinogram value,
was added on the sinogram. On each sinogram, a combina-
tion of random, accidental events (RS + AC) was added to
obtain the total sinogram, together with the GN. Simulation
has been repeated 50 times, for each noisy condition.

B. Figures of merit: quantifying the estimation error of ki-
netic parameters and reconstructed images

In order to evaluate the estimation errors due to the pres-
ence of noise, the following indexes have been computed on
the produced data.

As far as the kinetic parameters estimations and the frac-
tional blood volume, the percentage of errors is evaluated:

%k j =
k̂ j− k j

k j
, j = 1 . . .4 (7)

% fv =
f̂v− fv

fv
(8)

where k j and fv are the input parameters values used in the
simulation, and k̂ j and f̂v are the relevant estimated values.

The macro-parameter Ki (Ki =
K1k3

k2+k3
) is often taken into

account in dynamic PET data analysis, especially in clinical
studies; in the present work, the estimated Ki values are also
considered, and the eq. 7 is applied on them, as well.

In order to evaluate the goodness of the reconstructed im-
ages, for each time frame, the following error is evaluated:

E
(

X̂(t)−X(t)
X(t)

)
, t = 1 . . .Ttot (9)

where X(t) is the input image at frame time t and X̂(t) is
the relevant reconstructed image; the E in the eq.9 represents
the mean operation.



(a) Effect of randoms on T1 phantom with AC=30% and GN=2% (b) Effect of scattering on T1 phantom with RS=30% and GN=2%

(c) Effect of randoms on T2 phantom with AC=30% and GN=2% (d) Effect of scattering on T2 phantom with RS=30% and GN=2%

Fig. 2: Percentage errors of estimated fv, k j for i = 1, . . . ,4 and Ki evaluated according to eq.7 and eq. 8. (a) and (b) refer to tissue T1, while (c) and (d)
refer to T2. Red lines represent the zero reference, while the green lines are the estimation errors of the value of the parameters on noiseless data.

IV. RESULTS

In fig.2 the percentage errors, and standard deviations, of
estimated fv, k j , j = 1, . . . ,4 and the macro parameter Ki
evaluated according to eq.7 and eq. 8 are shown. In the figure,
red lines represent the reference of zero error, while the green
lines are the estimation errors of the value of the parameters
on data without noise. The results shown in (a) and (b) are
relevant to the input k-values of T1 in tab.1; the results shown
in (c) and (d) are relevant to the input k-values of T2 in tab.1.
The results in (a) and (c) are obtained with fixed AC value at
30%, while the results shown in (b) and (d) are obtained with
fixed RS = 30%; in all the figures the GN is fixed at 2%.

In fig.3 the dynamic images reconstruction errors, evalu-

ated according to eq. 9 for different noise percentages, are
shown, with the relevant TACs superimposed: results in (a)
are obtained from the input k-values of T1 in tab.1 and those
in (b) are obtained from the input values of T2; in both the
figures, the GN is fixed at 2%.

V. DISCUSSION

From the simulation results it is evident that, as expected,
when the noise increases the percentage error of the param-
eters estimation increases. However, also the following con-
siderations arise.

The fv parameter estimation gives always a negative per-
centage error; it means that the fractional volume of blood in



(a) T1 phantom (b) T2 phantom

Fig. 3: Dynamic images errors evaluated according to eq.9, with overimposed the relevant TACs.

the tissue is underestimated, also for low noise values.

In the simulation results shown in fig.2(a) and fig.2(b) rel-
evant to tissue T1, the percentage error of the k4 kinetic pa-
rameter seems very high (more than 200%); but it is worth to
note that for tissue T1 the input k4 value (see tab.1) is very
low, so in reality the not-normalized error value is very low
(less than 1E−4). As far as all the other k j parameters in fig.2,
the percentage errors are always less than 20%.

The percentage errors of K values for tissue T2 are lower
than for tissue T1, as it is evident comparing the curves of
fig.2(c) and 2(d) with fig.2(a) and 2(b), respectively; for a
better comparison, we used the same scale limits on y-axes in
the figures, except for the k4 parameter. A partial possible rea-
son, that could explain also the less bias observed for the rate
constants K1 and k2, can be that T2’s kinetic parameters are
comparably higher than those of T1 and that the estimation
method could be influenced by such a difference in magni-
tude. Moreover, in T2, the rate constant of k4 is not negligible
as compared to other rate constants. For that reason the influx
rate of Ki can not be considered a good parameter of interest
for the kinetics, since it assumes an irreversible tracer kinetics
with k4 = 0 (we reported it just for sake of completeness).

Regarding the percentage errors on reconstructed images,
the results of fig.3 show that the error, as well as depending,
as expected, on noise, is higher in low emission images (first
points in fig.3(a) and first and last points in fig.3(b)), for any
noise percentage values, as it can be seen taking into account
the values of the superimposed TAC time series. However, in
any case, it is important to note that the percentage error is
always less than 1E−2.

VI. CONCLUSION

In this paper the behaviour of dynamic PET direct recon-
struction algorithm on noisy data has been studied. We per-
formed simulations in order to extract indexes that quantita-
tively describe the goodness of kinetic parameters estimation
and dynamic images reconstruction. The results obtained al-
low us to affirm that the direct reconstruction algorithm tested
grant good performance also in presence of noise on simu-
lated data.

The next step of the work will be to validate this error-
quantification algorithm on real phantom/clinical dynamic
PET scan. Since in direct algorithms we are dealing with
raw sinogram data, we believe that the assessment of the fi-
nal output of reconstruction and parameter estimation should
be evaluated on those data. In fact, the objective of the fu-
ture work is to define a new method for assessing the error
in parameter estimation from the knowledge of the noise that
affects measured data.
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