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SimulationsBackground

Parametric images provide insight into the spatial distribution of physiological parameters, but they 
are often extremely noisy, due to low SNR of tomographic data. Direct estimation from 
projections [1] allows accurate noise modeling, improving the results of post-reconstruction fitting. 
We propose a method, which we name kinetic compressive sensing (KCS), based on a hierarchical 
Bayesian model and on a novel reconstruction algorithm, that encodes sparsity of kinetic 
parameters.

 

Conclusions

The simulation study demonstrated that the proposed method of introducing a sparsity-inducing prior in a direct reconstruction framework can help in producing high-quality images and parametric 
maps, that are both amenable for display and quantitatively more accurate than what a post-reconstruction fitting and unconstrained direct reconstruction can achieve (low bias and low variance, Fig.3).
This method appears to be promising as a feasible approach to applying kinetic modeling to very large 4D clinical datasets with a reduced computational cost, thanks to the parallel GPU 
implementation based on the analytic expression of the kinetic model and its derivatives. 
Future studies will extend the current open-source implementation, by integrating different kinetic models (linear and non-linear) and different priors. 
We have already started working to adapt the proposed KCS algorithm to deal with DCE-MRI (see Fig. 5) and dynamic CT tracer kinetic modeling.
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Insight about GPU implementation of MAP-LM optimization algorithm

Hierarchical Bayesian Model

The model has three key components:

1) the model of the acquisition 
system consists of the ordinary 
Poisson model, incorporating all effects 
of attenuation, scatter and randoms; 

2) the kinetic model encodes the 
assumption that the voxel intensities 
are noisy realizations of a hidden 
dynamic process, modeled using a 
multi-compartmental model.

3) The sparsity-inducing prior 
idistribution of the kinetic parameters 
is introduced a Markov Random Field 

the model of the acquisition 
system consists of the ordinary 
Poisson model, incorporating all effects 
of attenuation, scatter and randoms; 

the kinetic model encodes the 
assumption that the voxel intensities 
are noisy realizations of a hidden 
dynamic process, modeled using a 
multi-compartmental model;

a sparsity-inducing prior distribution 
of the kinetic parameters is introduced 
as a Markov Random Field (MRF) with 
Smooth L1-norm cost function [6]. Gaussian with var anc

MRF with L-1 norm cost
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Simulation setup
To assess the effect of the KCS algorithm in comparison with standard 
kinetic modeling techniques, and to evaluate the performance of the GPU 
implementation, we realized a Monte Carlo (MC) simulation with 100 
noise realizations. The kinetic behavior of the three main regions has 
been simulated using a 2-tissues irreversible compartment model, 
while the square area in the center has been modeled as a blood input 
region. In this simulation study we generated synthetic dynamic PET 
data, according to the hierarchical bayesian model presented. 

PET Dataset
The conventional indirect and direct, 
and the novel KCS approaches were 
applied to [18F]-FDG brain PET 
data, acquired on a Siemens mMR 
PET-MR scanner, using a 2-tissue 
irreversible compartment model.

PET Results
Top row of FIG.4 shows how the 
different methods perform in terms 
of image reconstruction, while 
the bottom row show the 
estimated Ki (net uptake rate) 
parametric maps: the proposed KCS 
direct method is able to produce 
spatially coherent images, with low 
noise and good tissue contrast, 
also when it comes to parametric 
maps estimates.

Algorithm workflow (ICM [3])

Expectation of 
activity predicted 

by the model

Raw projection 
data (4D)

STEP 1:
optimization of activity 

time series
(OSL-MAP-EM)

New estimate 
of activity time 

series

STEP 2:
voxel-wise optimization of 

kinetic parameters
(MAP-LM)

New estimate 
of parametric 

maps

We use the in-house developed Occiput[5] toolbox, 
which uses GPU parallel computation for the operations 
of projection and backprojection, involved in the OSL-
MAP-EM step [4]:

STEP 2 (iterative)

STEP 1

1) CUDA kernels to evaluate kinetic model and derivatives 
of log posterior and of MRF log prior.
2) CUDA implementation of the MAP-LM optimization, 
based on cuBLAS batched matrix operations. 

Entire EM-LM reconstruction performed on 
the GPU, with one GPU thread per voxel.
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STEP 1STEP 1

M GPU threads working in parallel on 
a CUDA kernel to evaluate model 
and derivatives, voxelwise [2]. 

STEP 2STEP 2

cuBLAS functions implementing 
a parallel Levemberg-Marquardt 
optimization, through batched 
matrix multiplications and 
inversions.

STEP 3STEP 3

M GPU threads working in parallel on a 
CUDA kernel to compute the derivatives 
of the Markov Random Field log prior, 
with Smooth L1-norm cost function on 
the current estimate of kinetic maps.

STEP 4STEP 4

Parameter estimate update, 
voxelwise.

iterate until convergence

Fig. 1

Fig. 2

Fig.4

[Preliminary] DCE-MRI study
We applied a modified version of the KCS method to a 
dataset of  oncologic liver Gd-DTPA DCE-MRI. With 
respect to Fig.1, now the relationship between k-space and 
image domain is governed by the NUFFT transform, while 
the kinetic model used is a 1-tissue compartment model. 
Comparing the reconstructions (Fig.5) of an early and short 
time frame (highly subsampled k-space), it is possible to 
appreciate how the KCS helps pointing out lesions that, 
with a standard reconstruction, are completely lost.

DCE-MRI recon [15sec after TOI] 

Fig.5
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Results
We compared the results of three different methods (indirect recon, 
direct recon, and direct recon with kinetic compressive sensing, KCS). 
In Fig.2, it is easy to recognize a first reduction in voxel-by-voxel 
variance when the kinetic model is used to regularize the reconstruction 
(DIRECT), which increases when the sparsity assumption of the spatial 
derivatives of the parameters is enforced (KCS). The bias/variance 
plot shows how a direct approach improves the quality of the estimate 
of parametric maps, with respect to the results provided by a standard 
indirect post-reconstruction fitting, but also how the novel sparsity 
constraint is able to further reduce the variance of the produced 
parametric maps, without affecting the bias.


