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Parametric images provide insight into the spatial distribution of physiological parameters, but they i
are often extremely noisy, due to low SNR of tomographic data. Direct estimation from |
projections [1] allows accurate noise modeling, improving the results of post-reconstruction fitting. |
We propose a method, which we name kinetic compressive sensing (KCS), based on a hierarchical |
|
|
|
|
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Simulation setup

To assess the effect of the KCS algorithm in comparison with standard
kinetic modeling techniques, and to evaluate the performance of the GPU
implementation, we realized a Monte Carlo (MC) simulation with 100
noise realizations. The kinetic behavior of the three main regions has
been simulated using a 2-tissues irreversible compartment model,
while the square area in the center has been modeled as a blood input
region. In this simulation study we generated synthetic dynamic PET
data, according to the hierarchical bayesian model presented.

Raw projection
data (4D)

Bayesian model and on a novel reconstruction algorithm, that encodes sparsity of kinetic
parameters.

We use the in-house developed Occiput[5] toolbox,
which uses GPU parallel computation for the operations
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time series of projection and backprojection, involved in the OSL-
(OSL-MAP-EM) MAP-EM step [4]:
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PET recon of frame #24 [35 min after TOI]
KCS recon PET Dataset

The conventional indirect and direct,
and the novel KCS approaches were
applied to [18F]-FDG brain PET
data, acquired on a Siemens mMR
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also when it comes to parametric
maps estimates.

Conclusions

Fig.4

The simulation study demonstrated that the proposed method of introducing a sparsity-inducing prior in a direct reconstruction framework can help in producing high-quality images and parametric
maps, that are both amenable for display and quantitatively more accurate than what a post-reconstruction fitting and unconstrained direct reconstruction can achieve (low bias and low variance, Fig.3).
This method appears to be promising as a feasible approach to applying kinetic modeling to very large 4D clinical datasets with a reduced computational cost, thanks to the parallel GPU
implementation based on the analytic expression of the kinetic model and its derivatives.

Future studies will extend the current open-source implementation, by integrating different kinetic models (linear and non-linear) and different priors.

We have already started working to adapt the proposed KCS algorithm to deal with DCE-MRI (see Fig. 5) and dynamic CT tracer kinetic modeling.

o DCE-MRI recon [15sec after TOI]

We applied a modified version of the KCS method to a
dataset of oncologic liver Gd-DTPA DCE-MRI. With
respect to Fig.1, now the relationship between k-space and
image domain is governed by the NUFFT transform, while
the kinetic model used is a 1-tissue compartment model.
Comparing the reconstructions (Fig.5) of an early and short
time frame (highly subsampled k-space), it is possible to
appreciate how the KCS helps pointing out lesions that,

KCS recon
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